STIFFNESS OF THE VOCAL FOLDS, A NEW CLINICAL PARAMETER TO EVALUATE THE QUALITY OF VOICE FUNCTION?

By Mette Pedersen, Martin Eeg, Anne Alexius Agersted, Anders Jønsson, Sanila Mahmood, Bilal Akram and Shezad Mahmood.

The 11th International Conference on Advances in Quantitative Laryngology, Voice and Speech Research (AQL) 8th April 2015, London
High speed films

• Superior to clinical laryngo-stroboscopy in many areas of voice diagnostics
• Able to capture 4000 or more images per second
• Data is acquired with a high-speed camera recording in real-time during phonation of the vowel /a/. A rigid endoscope (90° optic, 9-mm diameter) is placed into the oropharynx coupled to a high-speed camera.
Refined diagnoses of laryngeal disorders

Insted of stroboscopy:
• High speed films
• Kymography
• Phonovibrogram
• The prospects of calculation of ”Stiffness”
High speed endocam system

• With the High Speed Endocam system* there has been developed a software reproduction of the stiffness of single vocal fold movements with the Glottis Analysis Tools by M. Döllinger et al.

* Wolf Ltd. HRES Endocam 5562 analytic system (Richard Wolf GmbH, Pforzheimer Strasse 32, 75438 Knittlingen, Germany)
High speed films

Segmentation of the open quotients are calculated in front – center – rear area – smaller in front between the vocal folds.
High speed films and kymography

Kymography shows single movement of the vocal folds from above – here they are regular.
High speed films and mean stiffness

Segmentation:
The setup for calculation of measurements of mean stiffness of the Glottal Area Wave form (GAW)
The formula for stiffness

\[Stiffness = \frac{\max_{t \in T_i}(s(t))}{A_i} \]

Where \(T_i \) is the duration of \(i^{th} \) cycle in milliseconds (ms), \(A_i \) is the dynamic range (max-min) for \(i^{th} \) cycle and \(s(t) \) is the magnitude of the 1\(^{st}\) derivative of considered signal for \(i^{th} \) cycle (\(t \in T_i \)).
Difference in stiffness

- A difference in stiffness of the vocal folds is measured when comparing trained and non-trained voice users. The objective is to evaluate the new method based on software reproduction of the vocal fold movements, that is included in Glottis Analysis Tools used together with high speed films.
Trajectories

• Trajectories is like a kymogram
• The diagram shows the vocal cords in a 50% distance from the posterior border (therefor called [Traj-50%])
Trajectories of a contest winning female

Trajectory: 50% [Left] Trajectory: 50% [Right]

Pixel

Frame
Trajectories of a 59 years old male with acute laryngitis
High speed films and phonovibrogram

The results* of the segmentation. The Glottal Area Wave form (GAW) are shown with frames on the horizontal axis and pixel on the vertical axis.

*the contest winning female
High speed films and phonovibrogram

The regulation of the single movement presenting the area of the phonovibrogram of a contest winning female

Mette Pedersen - The Medical Centre - Voice Unit. Østergade 18, 3., 1100 Copenhagen, Denmark
Tel: +45 33 15 96 00; Fax: +45 33 13 77 05, E-mail: m.f.pedersen@dadlnet.dk
Irregularity of the single area measurements are seen of the 59 years old male.
GAW cycles of a contest winning female

Mette Pedersen - The Medical Centre - Voice Unit. Østeregade 18, 3., 1100 Copenhagen, Denmark
Tel: +45 33 15 96 00; Fax: +45 33 13 77 05, E-mail:m.f.pedersen@dadlnet.dk
GAW cycles of a 59 years old male with extreme dysphonia
High speed films and phonovibrogram

Phonovibrogram of the contest winning female, showing the regularity of single movement of the right and left vocal folds.
High speed films and phonovibrogram

Phonovibrogram of a 59 years old male with extreme dysphonia due to a heavy acute laryngitis

Mette Pedersen - The Medical Centre - Voice Unit. Østergade 18, 3., 1100 Copenhagen, Denmark
Tel: +45 33 15 96 00; Fax: +45 33 13 77 05, E-mail: m.f.pedersen@dadlnet.dk
Calculated measures for the signals of Glottal Area Waveform and Glottal Trajectories

From a contest winning female

<table>
<thead>
<tr>
<th></th>
<th>[MEAN]</th>
<th>[STD]</th>
<th>[MIN]</th>
<th>[MAX]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stiffness [GAW]</td>
<td>0.38</td>
<td>0.02</td>
<td>0.333</td>
<td>0.413</td>
</tr>
<tr>
<td>Stiffness [GAW] [Left]</td>
<td>0.391</td>
<td>0.024</td>
<td>0.338</td>
<td>0.432</td>
</tr>
<tr>
<td>Stiffness [GAW] [Right]</td>
<td>0.395</td>
<td>0.024</td>
<td>0.352</td>
<td>0.451</td>
</tr>
<tr>
<td>Stiffness [Traj-50%] [Left]</td>
<td>0.483</td>
<td>0.043</td>
<td>0.371</td>
<td>0.625</td>
</tr>
<tr>
<td>Stiffness [Traj-50%] [Right]</td>
<td>0.496</td>
<td>0.029</td>
<td>0.392</td>
<td>0.513</td>
</tr>
</tbody>
</table>

From a 59 years old male with extreme dysphonia due to a heavy acute laryngitis

<table>
<thead>
<tr>
<th></th>
<th>[MEAN]</th>
<th>[STD]</th>
<th>[MIN]</th>
<th>[MAX]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stiffness [GAW]</td>
<td>0.29</td>
<td>0.059</td>
<td>0.207</td>
<td>0.418</td>
</tr>
<tr>
<td>Stiffness [GAW] [Left]</td>
<td>0.313</td>
<td>0.056</td>
<td>0.232</td>
<td>0.444</td>
</tr>
<tr>
<td>Stiffness [GAW] [Right]</td>
<td>0.298</td>
<td>0.04</td>
<td>0.215</td>
<td>0.376</td>
</tr>
<tr>
<td>Stiffness [Traj-50%] [Left]</td>
<td>0.356</td>
<td>0.069</td>
<td>0.251</td>
<td>0.479</td>
</tr>
<tr>
<td>Stiffness [Traj-50%] [Right]</td>
<td>0.288</td>
<td>0.037</td>
<td>0.248</td>
<td>0.323</td>
</tr>
</tbody>
</table>

Mette Pedersen - The Medical Centre - Voice Unit. Østergade 18, 3., 1100 Copenhagen, Denmark
Tel: +45 33 15 96 00; Fax: +45 33 13 77 05, E-mail: m.f.pedersen@dadlnet.dk
Statistical analysis of stiffness

For trained statisticians!!!

- A statistical comparison of stiffness measurements of the two subjects can be done under the assumption that all the measurements on the same subject follow the same Normal distribution. The hypothesis that the variation is the same for the two subjects can be tested in the likelihood ratio test where the -2log likelihood difference is chi-square distributed with 1 degree of freedom when it is assumed that the measurements have different means for the two subjects.

<table>
<thead>
<tr>
<th>Statistical model</th>
<th>-2 log likelihood</th>
<th>Likelihood ratio test statistic</th>
<th>P-value (chi-square distribution with 1 degree of freedom)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subjects have different mean and variance</td>
<td>-261.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subjects have different mean and same variance</td>
<td>-228.6</td>
<td>33.30</td>
<td><0.00001</td>
</tr>
</tbody>
</table>

Mette Pedersen - The Medical Centre - Voice Unit. Østergade 18, 3., 1100 Copenhagen, Denmark
Tel: +45 33 15 96 00; Fax: +45 33 13 77 05, E-mail: m.f.pedersen@dahl.net.dk
Statistical conclusions

- The statistical model shows that there is a statistical significant difference in the variation of the GAW stiffness between the two subjects.
Conclusions

• Till now we have seen a difference between high quality voices and other voices and in this study we will present a quantified measure of the vocal fold stiffness calculated from individual vocal fold cycles as well as average measures.

• It is our impression that the system Glottis Analysis Tools stiffness calculations can be used clinically to differentiate between high and low quality voices.

• In the future, stiffness might be used to determine the treatment effect in voice pathology.
Find the slides on: http://www.mpopedersen.org

Thank you for your attention
References

• Evt. “Can phonovibrograms be used in clinical voice pathology”. In press
• Evt. “Technology advances in diagnostics of vocal folds function”. In press